The generator matrix

 1  0  0  1  1  1  1  1  1  1  6  1 X+6  1  1  1  X X+6  1  1  1  6 X+6  1  1  1  1  1  1  1  6  1 2X+6 2X+6  1  3  1  1 2X  1  1  1 X+3  1  1  1  1  1  1  1  1  1 X+3  1  1  1 2X  1  1  1  1  1  1  1  1  X  1 2X+3  1  1  6  1  1  1  1  3  1  1  1  1  1  1  1  1
 0  1  0  0  3 2X+7 2X+1 X+8 X+7 X+2  1  8  1 X+6 2X+5 2X+7  1  1  4 2X+2  X  1 2X+3 2X+2  4  3 X+8 X+7  2 2X+6  1  7  1  1 2X+8 X+6 2X+4  0  1  0 2X  6 X+3  8  1 X+2 2X+1 X+1 2X+7 2X  2 2X+1  1 2X X+2 2X+6  3 X+4 2X+6  3 2X+8 X+7 X+3  1 2X  1 X+5  6 X+7  7  1 2X+3 X+3  X  5  1 2X+5  1  4 X+3 X+2 X+6 2X+6 X+4
 0  0  1 2X+7  5  2 2X+1 X+3 X+6 X+5  7 X+1 2X+5  6 2X+7 2X+3  1  5 2X+1  6  7 X+3  1  5  2 X+8 2X+8 2X+3 X+3  0 2X+4  7  0 2X+2  1  1 X+5  7 2X+1 2X+6  2 2X+1  1  1 X+1  6 2X+2 X+4 X+6 2X+2 X+2 X+5 X+3  8 X+1 X+8  1 2X+1 X+1 2X+3 X+7 2X  2  5  0  6  X  1 X+8 2X+8 2X+4 2X+3 2X+4  X  8 X+4 2X 2X+4 X+3  3  3 2X+2 X+5 X+7
 0  0  0  6  6  6  6  6  6  6  0  6  0  6  3  0  3  6  3  0  3  3  6  3  0  3  0  3  3  3  6  0  6  3  0  6  0  3  3  0  0  0  3  3  0  3  6  6  0  0  0  3  3  3  6  6  0  3  0  6  0  6  6  3  6  0  0  3  3  6  0  6  0  0  3  6  0  6  0  3  0  6  0  6

generates a code of length 84 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 159.

Homogenous weight enumerator: w(x)=1x^0+398x^159+870x^160+1992x^161+2844x^162+3354x^163+4260x^164+4678x^165+4590x^166+4986x^167+4276x^168+4644x^169+4932x^170+4294x^171+3822x^172+2856x^173+2454x^174+1326x^175+1182x^176+636x^177+294x^178+180x^179+52x^180+42x^181+12x^182+28x^183+6x^184+6x^185+6x^186+6x^187+6x^188+6x^189+10x^192

The gray image is a code over GF(3) with n=756, k=10 and d=477.
This code was found by Heurico 1.16 in 11 seconds.